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ABSTRACT

Context. Galaxy clusters, the pinnacle of structure formation in our universe, are a powerful cosmological probe. Several approaches
have been proposed to express cluster number counts, but all these methods rely on empirical explicit scaling relations that link ob-
served properties to the total cluster mass. These scaling relations are over-parametrised, inducing some degeneracy with cosmology.
Moreover, they do not provide a direct handle on the numerous non-gravitational phenomena that affect the physics of the intra-cluster
medium.
Aims. We present a proof-of-concept to model cluster number counts, that bypasses the explicit use of scaling relations. We rather
implement the effect of several astrophysical processes to describe the cluster properties. We then evaluate the performances of this
modelling for the cosmological inference.
Methods. We developed an accelerated machine learning baryonic field-emulator, based on an extension of the Lagrangian Deep
Learning and trained on the CAMELS/IllustrisTNG simulations. We then created a pipeline that simulates cluster number counts in
terms of XMM observable quantities. We finally compare the performances of our model, with that involving scaling relations, for
the purpose of cosmological inference based on simulations.
Results. Our model correctly reproduces the cluster population from the calibration simulations at the fiducial parameter values, and
allows us to constrain feedback mechanisms. The cosmological-inference analyses indicate that our simulation-based model is less
degenerate than the approach using scaling relations.
Conclusions. This novel approach to model observed cluster number counts from simulations opens interesting perspectives for
cluster cosmology. It has the potential to overcome the limitations of the standard approach, provided that the computing resolution
and the volume of the simulations will allow a most realistic implementation of the complex phenomena driving cluster evolution.

Key words. Cosmology: Galaxy clusters, X-ray astronomy, Cosmological simulations, Machine Learning.

1. Introduction

One of the most intriguing open question of modern cosmol-
ogy, the nature of dark matter (DM), was raised almost a century
ago by the study of velocities in galaxy clusters (Zwicky 1933)
and, so far, remains unanswered. At the turn of the third mil-
lennium, extensive supernova studies showed that, in the local
Universe, expansion is accelerating (Riess et al. 1998; Perlmut-
ter et al. 1999). This indicates that the present-day Universe is
under the influence of some “negative pressure”, the so-called
dark energy (DE). The matter-energy budget of the local Uni-
verse, thus only allows for a few percent of luminous baryonic
matter.

To date, the simplest cosmological framework that accounts
for the largest sample of observational facts is the ΛCDM model,
within the framework of General Relativity, where the DE is the
cosmological constant Λ. We have now entered the era of preci-
sion cosmology, where large and deep extragalactic surveys are
multiplying: eROSITA, DESI (DESI Collaboration et al. 2022),
Euclid (Collaboration et al. 2024), LSST (Ivezić et al. 2019),
CMB-S4 (Abazajian et al. 2019), SKA (Maartens et al. 2015)
and ATHENA (Nandra et al. 2013). These facilities should allow

testing theoretical models beyond ΛCDM, by combining various
cosmological probes.

Galaxy clusters hold a privileged position in this quest. As
the ultimate product of hierarchical structure formation, clusters,
the nodes of the cosmic web, are sensitive to both the growth
of structures and to the geometry of the Universe. In particu-
lar, they occupy the high end of the halo mass function (HMF),
which is very sensitive to cosmological parameters. This has mo-
tivated numerous cluster number count studies for more than
three decades (Henry et al. 1992; Vikhlinin et al. 2009; Mantz
et al. 2010; Bocquet et al. 2019; Garrel et al. 2022). The detec-
tion of the intra-cluster gas (ICM) in X-ray is much less sub-
ject to projection effects than galaxy densities in the optical;
moreover, ab initio modelling of the ICM is straightforward. For
these reasons, X-ray cluster cosmology has been very produc-
tive. Future prospects for this waveband are exciting: from the
eROSITA all-sky survey (z ≤ 1; following the first survey anal-
ysis from Ghirardini et al. 2024), to ATHENA in the next decade
(1 < z < 2; Cerardi et al. 2024).

The HMF predicts the number of clusters formed per unit
mass as a function of cosmic time. Because cluster masses are
not directly measurable, scaling relations are used to relate X-
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ray luminosities or temperatures to mass, assuming hydrostatic
equilibrium or using measurements from gravitational lensing.
The slope and evolution of the scaling relations can be predicted
from a purely self-similar gravitational collapse of matter over-
densities (Kaiser 1986). However, observed and simulated clus-
ter populations present significant deviations from the expected
scaling relations (e.g. Maughan et al. 2012; Adami et al. 2018;
Bulbul et al. 2019; Bahar et al. 2022). The reason is twofold.
First, each cluster is affected by its connections to the cosmic
web, leading to non-spherical collapse and merger events, hence
to departure from equilibrium (Arnaud et al. 2010; Mantz et al.
2016). Second, strong radiative cooling occurs at the cluster
centres and non-gravitational processes inject energy into the
ICM (AGN and supernova feedback, turbulence and magnetic
fields). Fitting power-laws with intrinsic dispersion (possibly as
a function of redshift) is an easy way to encapsulate all non-
gravitational effects, in order to render the global properties of a
cluster sample. However, these empirical scaling-relation coef-
ficients are numerous (see table 2) and degenerate with cosmol-
ogy; e.g. are clusters in a given mass range not detected because
they have not formed yet, or because they are under-luminous, or
too extended? Moreover, scatter (and its evolution) is a key pa-
rameter in the relations but is difficult to measure because of se-
lection effects. All in all, while useful for implementing the nec-
essary mass-observable connections in the cosmological analy-
sis, scaling relations are over-parametrised and do not allow di-
rect insights into the individual non-gravitational processes that
galaxy clusters experience.

To date, all cluster count analyses used empirical scaling re-
lations in their approach to cosmology. (e.g Vikhlinin et al. 2009;
Mantz et al. 2010, with mass and luminosity, respectively).
Clerc et al. (2012a,b) proposed to forward model the theoreti-
cal number counts from the HMF down to the clusters proper-
ties, as registered by the detector (ASpiX method). In this new
approach, the cluster population is summarised into a 3D X-ray
Observable Diagram (XOD) combining count-rate, hardness ra-
tio and redshift (CR, HR, z), analogous to a flux, colour, redshift
diagram in X-rays. Although the subsequent cosmological anal-
ysis bypasses the calculation of the individual clusters masses
and provides better control on the measurement errors, it still
relies on the scaling relation formalism for the likelihood com-
putation. Only implicit inference methods ought to eliminate this
component.

In a subsequent paper, we tested simulation-based inference
techniques to perform number counts analysis (Kosiba et al.
2024); we only relied on scaling relations for modelling the de-
tected cluster population, but did not require any during infer-
ence. In the present work, our goal is to achieve the modelling
of the physical cluster properties used in the cosmological infer-
ence, without the intermediate step involving scaling relations.

Hydrodynamical simulations offer a way to model clusters
that takes into account the majority of the above-mentioned en-
vironmental and non-gravitational processes for a given set of
cosmological parameters. They moreover implicitly carry infor-
mation on the HMF and on the scaling relations. However, they
are numerically too expensive to be used during the inference.
To overcome this issue, we developed an accelerated simulation
framework, powered by machine learning (ML) tools. Specif-
ically, we combine GPU-accelerated DM-only (DMO) simula-
tions with a fast baryonification technique, calibrated on hydro-
dynamical simulations. In a last step, we connect this model with
the cosmological inference scheme from Kosiba et al. (2024). Of
course, the final success of the proposed methodology very much
depends on the degree of realism of the simulations, but in the

present paper, we intend to remain at the proof-of-concept level.
We list below three important issues that constitute the basis of
the paper.

1. Can we learn an accurate and fast ML baryonic field em-
ulator to model cluster number counts? We describe the
ML approach adopted in section 2, along with the simulation
pipeline that embeds it. The results are presented in section
4.

2. What is the relevance of this approach for the inference?
We detail the inference stages in section 3, and combine it
with the simulation-based model to present its results in sec-
tion 4.

3. To which extent are simulations realistic? This question is
currently an obvious showstopper for the application of the
method to real observations. We discuss the problem from
several viewpoints in sections 4 and 5.

2. Fast simulations with extended LDL

In this section we describe a simulation-based forward model for
cluster number counts. The model relies on DMO simulations
and baryonification with a ML approach, that makes it cheaper
to run than full hydrodynamical simulations. We produce X-ray
light cones from the emulated volumes and perform cluster de-
tection and caracterisation.

2.1. Hydrodynamical simulations

We use the CAMELS dataset (Villaescusa-Navarro et al. 2023)
to train our ML emulator. It contains thousands of hydrodynam-
ical simulation boxes, run with different codes and for various
cosmological and astrophysical parameters. As such, it is a well
suited simulation set for ML projects. We here only consider
the CAMELS/IllustrisTNG (Pillepich et al. 2018; Nelson et al.
2019) suite, specifically using the subsets:

– Cosmic Variance (CV): 27 boxes of size 50 h−1Mpc, all at
the fiducial parameters values.

– Latin Hypercube (LH): 1000 boxes of size 25
h−1Mpc, each one with a unique parameters set
(Ωm, σ8, AAGN1, AAGN2, AS N1, AS N2). The four latter pa-
rameters tune the astrophysical feedback, respectively acting
on the AGN energy accumulation rate, the AGN burstiness,
the SN energy injection rate and the SN wind speed. The
fiducial value and range of variation of all the parameters
are shown in table 1.

In this work, we focus on modelling the ICM electron num-
ber density ne and temperature T , which allows us to compute
the X-ray emission of the gas (see section 2.3). We pre-process
the input simulations to obtain these quantities on a regular grid,
similarly to (Villaescusa-Navarro et al. 2022). We use the Cloud-
in-Cell (CIC) algorithm to spread the simulated particles in co-
moving voxels. For both CV and LH, we use a voxel size of
0.39h−1Mpc, which sets the working resolution throughout all
this article.

In our simulation-based forward model, we evolve the DM
with a fast Particle-Mesh (PM) approach, in order to accelerate
further the field emulation. As a result, we resimulate the DM
fields of all CAMELS/IllustrisTNG CV and LH with the code
JaxPM1, starting from the same initial condition at z = 6. We

1 https://github.com/DifferentiableUniverseInitiative/
JaxPM
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Table 1. Summary of the training data, and simulation parameters in the CAMELS dataset

Simulation set CV50 (fiducial) LH25 (conditioning)
Number of simulations (training/validation) 27 (21/6) 499 (400/99)

Box volume (h−3Mpc3) 503 253

Redshift used in training 0.21 0.1, 0.15, 0.21, 0.27, 0.33, 0.40, 0.47, 0.54
Training steps using the set base LDL extended LDL: conditioning and z dependancy

Ωm 0.3 U(0.1, 0.5)
σ8 0.8 U(0.6, 1.0)

ln(AS N1) ln(1.0) U(ln(0.25), ln(4.0))
ln(AS N2) ln(1.0) U(ln(0.5), ln(2.0))
ln(AAGN1) ln(1.0) U(ln(0.25), ln(4.0))
ln(AAGN2) ln(1.0) U(ln(0.5), ln(2.0))

Notes. CAMELS/IllustrisTNG sets used in this study. We describe in the upper part of the table the main characteristics and usage of each
simulation set. We detail in the lower part the six parameters of interest for this work. For cosmology, the remaining parameters are set to the
values from Planck Collaboration et al. (2020). Many other simulation parameters exist to monitor subgrid physics, but are kept fixed in this first
version of CAMELS.

train our ML emulator to mock the baryonic properties from the
PM-approximated DM instead of the original DM field. The PM
method induces a smoothing at small scales, and several tech-
niques have been employed to compensate this effect (Dai et al.
2018; Lanzieri et al. 2022). We do not use these methods here:
our ML surrogate hence has the double objective of correcting
the PM approximation and modelling accurately the baryonic
properties.

2.2. Fast baryonification

2.2.1. Base Lagrangian Deep Learning

We use the Lagrangian Deep Learning framework to quickly
emulate ne and T from DM fields (LDL, Dai & Seljak 2021).
This approach uses two kinds of learnable layers: one of parti-
cle displacement, and one of non-linear activation. The first one
acts on the DM simulated particles, moving them following a
modified potential. We use two consecutive displacement layers
in our LDL model. The activation layer, unique in our model,
introduces the non-linearities of baryonic processes. Compared
to deep generative models (such as U-nets) LDL is a very
lightweight approach, and follows,by design, physical principles
(rotation and translation invariance, particles moving along a po-
tential).

Formally, if we consider an input overdensity field δ(x)
(which is the DM overdensity only if this is the first layer), we
first model a source term:

f (x) = (1 + δ(x))γ, (1)

with γ a learnable parameter. We use a highly flexible ra-
dial Fourier filter based on a B-Spline S(Ξ, k), inspired from
Lanzieri et al. (2022):

ÔS(k) = 1 + S(Ξ, k), (2)

where Ξ are the B-Spline paramters, learnable. The displacement
field, applied to the input particles, then writes:

dx = α∇F −1
(
ÔS(k) f̂ (k)

)
, (3)

with α an additional learnable parameters, and F −1 the inverse
Fourier transform. After repeating two times this displacement
procedure, the activation is performed with a Rectified Linear
Unit (ReLU):

F(x′) = ReLU
(
b1(1 + δ(x′))µ − b0

)
, (4)

with b0, b1, µ completing the list of learnable parameters, which
we all regroup under the symbol Θ. Note that the output of the
LDL is not a set of particles but a field on a comoving grid.

The LDL layer parameters, similar to neural network
weights, are trained using the target property from a hydrody-
namical simulation. As the end goal of our baryonification tech-
nique is to reproduce the X-ray emissivity (∝ n2

eT 1/2) of the gas
in clusters, the model is trained using the following loss func-
tions:

Lne =
∑

i

∥∥∥∥Os ∗
[(

n2
eLDL

(xi) − n2
etrue

(xi)
)

T 1/2
true(xi)

]∥∥∥∥ ρDM(xi), (5)

LT =
∑

i

∥∥∥∥Os ∗
[
n2

etrue
(xi)

(
T 1/2

LDL(xi) − T 1/2
true(xi)

)]∥∥∥∥ ρDM(xi), (6)

which use a smoothing operator Ôs(k) = 1 + k−n. The value for n
follows the prescription from Dai & Seljak (2021). We here use
the CAMELS/IllustrisTNG CV set, at z = 0.21, a choice moti-
vated by the usual peak of the redshift distribution of clusters in
current X-ray surveys.

2.2.2. Extended LDL

The LDL approach we have sketched is trained to repro-
duce a specific simulation model, i.e. the fiducial model
at a specific redshift. However, during the cosmologi-
cal inference, we want to vary the cosmological parame-
ters, as well as the feedback parameters that may impact
the intergalactic gas, which are AAGN1, AAGN2, AS N1, AS N2 in
CAMELS/IllustrisTNG. We hence need an extended LDL
model, whose weights Θ are conditioned on the simulation pa-
rameters θsim=(Ωm, σ8, AAGN1, AAGN2, AS N1, AS N2). Then, as we
need to populate lightcones, we also want this baryonification to
depend on the redshift.

We retain the base LDL parameters trained on CV, that we
coin Θ f id. We use a simple multi-layer perceptron (MLP) to out-
put a weight variation δΘ. Following a meta-learning approach,
we now train the MLP on the LH set, passing to the LDL model
the weights:

Θ = Θ f id + δΘ(θsim). (7)

This second step of training is also restricted to z = 0.21. To
make the baryonification model dependent on z, we duplicate the
MLP δΘ(θsim) and retrain it separately at the available redshifts
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in the LH set. For a given z, surrounded by zk and zk+1, the clos-
est redshifts for which a model is trained, we compute δΘz(θsim)
by linear interpolation between δΘzk (θsim) and δΘzk+1 (θsim). We
find that by emulating ne in comoving coordinates, the accuracy
of our model is not improved by adding the dependence on z
(z < 0.5, see Sec. 2.3). Consequently, we bypass the interpola-
tion step for ne. To the contrary, the T fields show a strong de-
pendency on z, which can be explained by the strong influence
of feedback on the temperature, so the redshift-conditioning is
required for T . We resume the successive training stages in fig-
ure 1. The functional scheme of the extended LDL is sketched in
the figure 2.

2.3. Simulation-based pipeline

We use the extended LDL to produce mock X-ray observations.
We generate 20 deg2 lightcones extending from z = 0.1 out to
z = 0.5. These boundaries are due to a current limitation of our
code, which does not support yet parallelization of one simula-
tion over several GPUs. As a result, we have tuned the redshift
range so that one simulation almost fill up the memory of a 32Go
V100 GPU. One lightcone is made of 12 adjacent periodic boxes
of equal comoving size, each one evolved with different random
initial conditions at z = 99. The depth of the boxes varies with
Ωm, and so the number of particles and voxels. Several light-
cones profiles are displayed in figure 4. We evolve DMO fields
with JaxPM, and then paint in voxels the electron number den-
sity and the temperature with the extended LDL, all at a fixed
resolution of 0.39h−1Mpc.

We then compute the X-ray emission of each voxel. We
assume the intracluster gas is at a fixed metallicity of Z =
0.3Z�, and we use pyatomDB2(Foster et al. 2012) to com-
pute the bremsstrahlung emission spectrum. We have developed
xrayflux3, a convenient wrapper of pyatomDB that redshifts
the spectra and convolves them by the instrument response. We
use the XMM-Newton/EPIC response files, and we obtain count
rates (CR) in the bands [0.5-1] and [1-2] keV (observer frame),
similarly to the framework used in the XXL Survey (Pierre et al.
2016). We did not model the galactic absorption, which is negli-
gible when observing far enough from the galactic plane, like in
XXL. For wider surveys, the modelling of the galactic absorption
and of its variations across the covered area would be necessary
(as for instance in Clerc et al. 2024). For simplicity, we do not
include X-ray AGNs in the field, and do not add Poisson noise
on the photon counts. We project separately the boxes along the
line of sight, so that we obtain 12 X-ray maps in each energy
band, with a resolution of ∼ 1’.

The detection is performed independantly on each map along
the line of sight, over the total [0.5-1]+[1-2] energy band, using
sep (Barbary 2016), a python implementation of SExtractor
(Bertin & Arnouts 1996). For each detected object, we sum the
CR[0.5−2] in its corresponding segmentation mask to obtain the
integrated source CR. We retain all sources with CR[0.5−2] > 0.02
c/s, a flux limit that gives a density of cluster similar to the
XXL C1 sample with the traditional forward model (Kosiba et al.
2024). For the selected sources, we compute their hardness ra-
tios HR ≡ CR[1−2]/CR[0.5−1], a tracer of the cluster tempera-
ture and redshift. The adopted detection method is simple and
could be upgraded to better reproduce real-observation process-
ing (Pacaud et al. 2006), but is sufficient for the purpose of this
proof-of-concept paper. Moreover, we mention that projection

2 https://atomdb.readthedocs.io/
3 https://github.com/nicolas-cerardi/xrayflux/

effects within a lightcone are ignored in the detection process.
We have omitted the Poisson noise and neglected measurement
errors on the CR and the HR, which has an impact on the number
of objects detected. Some X-ray mocks are shown as example
in figure 3. We finally regroup the objects detected in 10 inde-
pendent lightcones to populate a 3D XOD, representative of a
200 deg2 and 10ks depth survey carried out with XMM-Newton.
These XOD serve as the input statistic used during the inference.

This pipeline benefits from GPU acceleration until the detec-
tion step. Thanks to the PM simulations and the eLDL, the whole
generation process is very fast: ∼100 seconds are required to pro-
duce an XOD of a 200 deg2 survey, evolving a total of ∼ 109 DM
particles.

3. Simulation-based cosmological inference

We described in the previous section a fast forward model based
on cosmological simulations. From this, analytical scaling rela-
tions are required to write the likelihood and to perform a tradi-
tional inference scheme like MCMC. However, here, our simula-
tions do not provide us with such scaling relations, and prevents
us from using an explicit likelihood. We are therefore turning
to simulation-based inference (SBI), a new field that emerges
thanks to the advances in ML. Specifically, the use of neural
density estimators (such as Bishop 1994; Rezende & Mohamed
2016) enables us to learn the probability density of interest. We
here detail our approach, inspired from Kosiba et al. (2024).

3.1. Neural compression

As a first step, we perform neural compression on our XODs.
The motivation for this is that SBI techniques usually work bet-
ter on low dimension statistics. We build a convolutional neural
network with ResNet blocks (He et al. 2015), which takes the
XODs x as input (with the redshift dimension as image chan-
nels) and outputs the neural compression y, a vector containing
six scalars, the size of the simulation parameter vector θsim. We
use a rather shallow architecture, with 4 ResNet blocks (3 con-
volution layers each) followed by one MLP (3 dense layers). We
train our CNN to retrieve the latter using a mean-squared error
loss, a choice that can lead to biased posterior (Lanzieri et al.
2024; Jeffrey et al. 2020). As we do not apply the NPE on real
data, and are primarly interested by the size of the constraints,
this choice is not critical in this paper.

We generate with our pipeline a large sample of 48000
XODs, each one with a random set of simulation parameters.
32000 XODs are used for the training, 4000 for the validation,
4000 for testing. The remaining 8000 are used for the infer-
ence. We apply a normalization on both the input XODs and
the target parameters such that all fields seen by the ResNet are
between 0 and 1. The generation of these datasets necessitates
∼ 2000hGPU, while the ResNet training and the inference only
requires ∼ 1hGPU.

3.2. Neural Posterior estimation

We then directly learn the posterior from the compressed statis-
tics y, using the neural posterior estimation (NPE) technique
(Papamakarios & Murray 2018). Unlike neural likelihood es-
timation (NLE, Wood 2010), the NPE is amortized, meaning
that we do not need to retrain our density estimator when we
have a new observation y0. One downside of the NPE is that the
prior is encoded in the learnt density, and hence cannot be easily
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Fig. 1. Training stages of the extended LDL. We first train the base LDL parameters on the large volumes available for the fiducial model
(CAMELS/CV), at z = 0.21. We then condition the LDL parameters on the cosmological and astrophysical parameters, using the numerous boxes
from the CAMELS/LH set. While the ne model performs equally at all redshifts, the T emulator has to be retrained separately at all available
redshifts.

Fig. 2. Scheme of the extended LDL. Blue rectangles denote quanti-
ties and green ovales denote transformations. The bottom raw is the
base LDL from Dai & Seljak (2021). Our extensions allow the baryon
pasting to be conditioned on simulation parameters as well as on the
redshift.

changed. We use a mixture density network (MDN) to emulate
the conditional posterior qϕ(θ | y), with ϕ the MDN weights.
We use the package sbi (Tejero-Cantero et al. 2020) to train a
MDN instantiated with 10 Gaussian components. For any y0 un-
seen during training, we can directly sample the neural posterior
qϕ(θ | y = y0), show the high density regions and compute the
uncertainties on each parameter.

4. Results

In the first place, we introduce the analytical forward model to
be compared with the simulation-based pipeline developped in
this work. In a second step, we study the fidelity of the LDL
surrogate simulations, relatively to the original hydrodynamical
CAMELS. Afterwards, we look at the possibility to obtain pos-
teriors using this accelerated simulation-based forward model.

4.1. Analytical modelling

As a baseline for comparison, we consider a traditional forward
model that uses empirical scaling relations. In this paper, we are
mainly interested in comparing the two methods on the infer-
ence task, but shall also compare the observed dN/ dz in order to
quantify the general level of realism of our model. We keep the
fiducial values of Ωm and σ8 from table 1, and retain the Planck

Collaboration et al. (2020) values for the remaining cosmologi-
cal parameters. We then express the number counts in the mass-
redshift plane with the HMF from Tinker et al. (2008). We use
the scaling relations from Pacaud et al. (2018) to obtain the clus-
ter temperature and luminosity, following which we compute the
measured X-ray flux with the XMM-Newton/EPIC instruments
using XSPEC (Arnaud 1996). As in the previous section, we only
keep the objects with a CR larger than CR[0.5−2],lim = 0.02 c/s.
This does not ensure the selection functions to be strictly equal
between both models, as the detection algorithm used on the sim-
ulations may induce some artefacts. We finally obtain the source
density in the (CR, HR, z) space, which we multiply by the sur-
vey solid angle, 200 deg2. We compare the simulation-based and
analytical forward models in table 2.

4.2. Extended LDL results

Although we are interested in clusters, we first take a look at the
raw LDL results, i.e. at the voxel level. In figure 5, we show the
voxel electron number density as a function of the DM density to
critical density ratio, for the test simulations of the CV set, both
for the original hydrodynamical boxes and their LDL-predicted
counterparts. We observe that the LDL predictions are less dis-
persed than the original values, meaning that our model does not
fully capture the diversity of ne at a given ρDM/ρc. We more-
over fit and display power-laws for both the target and predicted
voxels. We compute the deviation of each voxel from the power
law, and the correlation between the hydrodynamical and LDL
deviations. The correlation coefficient is found to be 0.56, which
indicates that the LDL voxels are not simply randomly dispersed
around the mean power-law. However, these results do not yield
much information on our primary focus, clusters, so we prevent
ourselves to overinterpret the raw LDL predictions.

Secondly, we look at the results on clusters, using the pro-
cedure described in 2.3. Although we do not use explicit scaling
relations in our modelling, in principle the cluster population in
the CAMELS simulations should emulate implicit scaling rela-
tions, a physical consequence of the collapse of DM overden-
sities. Once again, relying on the test simulations from the CV
set at z = 0.21, we compute the mock X-ray maps from both
the original and the LDL simulations. We here run the detection
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on the ρDM/ρc maps, to avoid any bias toward the true or pre-
dicted structures in the CR maps. We compute the mass, the true
CR and the predicted CR by integrating over the detection mask
of each source. The measured mass here does not exactly relate
to the spherical overdensity mass as in classical cluster studies.
But as the detection uses a threshold of ρDM/ρc = 200, it can be
considered as an approximation of M200c, without the spherical
assumption and including potential contaminants on the line of
sight. Still, we can compare together our hydrodynamical and
LDL clusters since their mass estimates are consistent. In figure
6, we first show the CR − M relation for each cluster set. Our
LDL-emulated cluster sample reproduces very well the normal-
ization, slope and scatter of the clusters in CAMELS/CV. But
our approach does more than just recovering the scaling rela-
tion: we again compute the deviation of each cluster CR to the

mean relation, and find that the LDL and true deviations are very
well correlated (ρcorr = 0.88). This shows that, thanks to the 3D
modelling approach, our trained LDL is able to integrate infor-
mation from the cluster environments (but not all), and how this
affects cluster properties. In that sense, our modelling is superior
to an explicit and empirical scaling relation. We also compute
the error on the prediction (see figure, right panel), and find it
to be two times smaller than the natural scatter of the CR − M
relation. However, this study cannot be reproduced for the LH
set, given that for one specific set of simulation parameters, we
only have one (25h−1Mpc)3 box, which does not provide suffi-
cient statistics on clusters. This shows a limitation of the version
of CAMELS we use here.

We now compare the cluster number counts from simula-
tion and analytical models, in figure 7. For our simulation-based
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Table 2. Comparison of different number counts modelisation, in this work and from the literature.

Study z range Observables Number of free parameters
(cosmo+nuisance)

This work, simulation-based model 0.1 < z < 0.5 CR,HR, z 2+4
This work, analytical model 0.1 < z < 0.5 CR,HR, z 2+6
ROSAT (Mantz et al. 2010) z < 0.5 L,T,Mgas, z 4+27

XMM-XXL (Garrel et al. 2022) 0.05 < z < 1 CR,HR, z 5+7
eRASS1 (Ghirardini et al. 2024) 0.1 < z < 0.8 CR,MWL, λ, z 4+22

Notes. The top part of the table shows the characteristics of the models used in this article. The bottom part quotes the main characteristics of
models applied on real X-ray surveys.

Fig. 5. Relation between the electron number density ne and the DM
density for the hydrodynamical simulations (blue crosses) and the LDL
surrogate (red crosses), for the fiducial parameters and at z = 0.21. The
blue and red lines denote the mean locus (respectively for the hydrody-
namical and the LDL-predicted voxels). The voxel deviation from the
mean for both methods is quite correlated (ρcorr = 0.56), but the LDL
predictions do not reproduce the same scatter as in the original simula-
tions.

model, we here generate 48 surveys covering 50 deg2, with
z ∈ [0.1, 0.5], and measure the redshift distribution in each of
them. We obtain theoretical number counts with the analytical
model presented in section 4.1, for a survey with the same di-
mensions. We also display the observed distribution from the
XXL Survey, although one should keep in mind that it is not di-
rectly comparable, because the XXL selection function is more
complex than the simple CR cut we have been using. While the
simulated and analytical distributions share the same peak posi-
tion (at z = 0.2) and compatible number counts for z > 0.3, we
observe a significant discrepancy at lower redshifts, where our
simulated-based number count is larger than the explicit mod-
elling: the total number of clusters with our LDL simulations
is 40% higher than with the analytical model. This is surpris-
ing as we have shown previously that our LDL model well re-
produces the fiducial cluster population from CAMELS. But we
have left aside several important questions. Indeed, we have no
guarantee that the HMF arising from the CAMELS simulations
is compatible with the functional fit from (Tinker et al. 2008),
nor that the X-ray luminosity of simulated clusters is realis-
tic enough. First, it is known that baryonic processes affect the
HMF (Bocquet et al. 2016; Kugel et al. 2024). Second, Pop et al.
(2022) showed that the X-ray luminosity in IllustrisTNG clus-
ters is slightly higher than for observed samples, in particular for
the core-excised luminosity. We also note from this study that
the LX − M of IllustrisTNG clusters appears is low-scattered,
which may clearly impact the dN/ dz through selection effects.

Aside from this considerations, we recall that we have imple-
mented very simple detection and property measurement pro-
cesses, which are also likely to impact the number counts in out-
put. In this work, we focus on the LDL acceleration and SBI for
cluster cosmology, so we leave open these questions for now.
Certainly, it will be necessary to consider them before applying
our method on real data.

4.3. Posteriors

We now present the results of the simulation-based inference
with the ResNet compressor and the NPE method. We first look
at the regression performance of the ResNet model, trained and
tested on our simulated XODs dataset varying the six simulation
parameters considered in this work, in figure 8. The ResNet re-
trieves well Ωm and σ8, as the points are distributed close to the
1:1 slope. The SN feedback parameters are also recovered, but
with a larger scatter. However, the ResNet predictions are highly
scattered for the AGN feedback parameters as currently imple-
mented in CAMELS, and present biases near the edge of the
sampled prior (see figure 8, bottom left and bottom right panel).
This indicates that our forward model is not very sensitive to
these parameters, at least under the XOD statistics, and for a 200
deg2 survey. The weak response of our LDL model to the AGN
feedback variations in fact stems from the CAMELS dataset it-
self. We discuss this point in section 5.4.

Finally, we present the results of the NPE method. We use
simulated XODs x0 that were neither used for the ResNet train-
ing nor its testing, and use the ResNet to obtain their compres-
sions y0. The compressions are in turn passed to the trained NPE,
providing us with a posterior estimations q(θ | y = y0), margi-
inalized over the feedback parameters. We show the 68% and
95% confidence regions for 16 different y0 in figure 9, where we
have simply excluded XODs simulated from parameters close to
the border of the parameter space. We show in addition the posi-
tion of the compression y0, and of the true underlying cosmolog-
ical parameters θtrue. Contours on cosmology, marginalized over
the retro-action parameters. We add in appendix A an analysis
of the quality of our posteriors. This illustrates the viability of
our model for a cosmological inference. The acceleration of the
simulations with GPU resources and the LDL surrogate baryoni-
fication enables the creation of the datasets required by the SBI
approach we use.

5. Discussion

5.1. Intrinsic degeneracies of the simulation-based and
analytical models

To assess the relevance of our new modelling, we first study the
intrinsic degeneracies of both models. For the analytical forward
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Fig. 6. CR − M scaling relation at z = 0.21 in the CAMELS/IllustrisTNG simulations and in their LDL surrogate, for the fiducial model. These
plots are made with the CV test set, 6 boxes of volume (50 h−1Mpc)3 each.
Left: direct comparison of the hydrodynamical simulated clusters (blue crosses) and their LDL counterpart (red crosses). The plain lines and
shaded region indicate respectively the mean relation and scatter for each method. The scaling relation is well reproduced by the LDL method.
Middle: Deviation of the hydrodynamical values and LDL prediction to the mean relation (blue points), and the 1:1 slope (dashed line). The strong
correlation indicates that the LDL recovers more than just a scaling relation: it can learn why a specific cluster is over or under luminous, given its
mass, thanks to its 3D DM distribution.
Right: histogram of the CR prediction errors. At the cluster level, the LDL prediction appears unbiased, and with a scatter of 0.12 dex, smaller
than the natural scatter of the CR − M relation.
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Fig. 7. Redshift distribution of cluster counts for the traditional forward
model (with explicit scaling relations, orange histogram), and for the
simulation-based model (with the LDL, blue histogram), here for a 50
deg2 survey extending from z = 0.1 to z = 0.5. The shaded regions
display the 3σ Poisson standard deviation for each model. Also shown
is the observed distribution of C1 clusters in the XXL Survey (dashed
black histogram), however one should keep in mind that the selection
function is in this case more complex than a simple flux cut.

model, we can explicitly write the likelihood. Writing an XOD as
a set of expected number counts λi(θ) in bins of the (CR, HR, z)
space, and if we assume that observed counts in different bins are
independent and follow a Poisson distribution, we can express
the Fisher matrix in the following manner:

Fαβ =
∑

i

1
λi

∂λi

∂θα

∂λi

∂θβ
. (8)

Under the assumption that the likelihood is Gaussian, the Fisher
matrix can hence be inverted to obtain the optimal constraints
achievable by the model. More details on the computation of the
Fisher matrix can be found in Cerardi et al. (2024); Kosiba et al.
(2024).

We show in figure 10 and 11 the full posteriors for the
simulation-based and the analytical model, respectively obtained
through the NPE and Fisher analysis methods. An elongated
contour indicates a degeneracy between parameters. Many clear
degeneracies appear in the model with scaling relations: not only
the scaling relation coefficients are degenerate between each
other (e.g. αMT and γMT ), but in addition, they are also de-
generate with the cosmological parameters (e.g. M0 and Ωm).
This shows that even under our XOD statistic (which is superior
to a representation in the mass redshift plane, see Clerc et al.
2012a), these parameters are hard to separate and cosmology is
less constrained. We do not observe similar degeneracies for the
simulation-based model. With the current set of parameters, only
AS N1 and AS N2 seem slightly degenerate but, most importantly,
none of the feedback parameter appears degenerate with cos-
mology. This is the main benefit of conditioning our model on
parameters describing the physical processes within the ICM.

5.2. Towards a universal parametrisation ?

The analytical modelling uses a set of empirical scaling relations
that has to be well adapted to the chosen study: there is no gen-
eral modelling available (see for instance the different references
in table 2). Depending on the observables and on the character-
istics (more or less massive, more or less distant) of the detected
sources, one would change the number of scaling relations used
and the number of free parameters to best fit the data (see the
compilation in table 2). For instance, the eRASS1 analysis does
not use the HR (thus no L − T or M − T relation needed), but
does include the opitcal richness λ (so an extra relation M − λ
has to be modelled), and several model parameters have a red-
shift dependence at the cost of extra nuisance parameters. As
the parameters of our simulation-based model are related to the
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Fig. 8. Accuracy of the ResNet regression for inferring Ωm, σ8, AS N1, AAGN1, AS N2, AAGN2 from simulation-based XODs. The color and contours
show the shape of the density of points (arbitrary colour scale, all densities are normalized). The dashed line show the 1:1 line (no error). We
observe that the two cosmological parameters are well recovered. The SN feedback parameters are also rather well estimated, although with a
stronger scatter. However, the ResNet struggles to retrieve the AGN feedback parameters, meaning that these parameters do not influence much
our XOD statistics.

physical processes in the ICM, we shall not need need to change
our parametrisation for a different set of observables. We show
in figure 12 the contours obtained if we run the analysis by sim-
ply removing one or two dimensions in the (CR, HR, z) space.
The contours are slightly broadened because of the loss of infor-
mation, but the constraints are still informative. This can also be
seen in the table 3 that compares the relative figure of merit of
these posteriors. Clerc et al. (2012a) found that the redshift dis-
tribution struggles to constrain cosmology, because of degenera-
cies between parameters that the CR-HR representation is able
to break. With our simulation-based model trained on astrophys-
ical processes, the dn/dz statistics provides constraints that are
comparable to those from the CR-HR space. This prediction is
quite different from that by Clerc et al. (2012a) (fig. 12) and
suggests, that because our set of (non-cosmological) priors is
more physically motivated than theirs, our scaling-relation inde-
pendent modelling of cluster properties is less degenerate. Our
approach seems thus to “naturally” exclude entire unphysical re-
gions of the coefficient-cosmology space, that were left open in
the approach relying on scaling relations with priors. But, in this
comparison, one has to consider that Clerc et al. (2012a) imple-
mented measurement errors in the CR-HR space and had one
more free cosmological parameters (w0), which opened addi-
tional degeneracies.

5.3. Scaling relations conditioned on astrophysical
parameters

In section 4.2 we studied the CR-M scaling relations emulated in
our simulations under the fiducial set of parameters. This opens
a new way of modelling cluster number counts: we can use our

Table 3. Performances of different test statistics with the simulation-
based model

Observables used in
the summary statistics FoM ∆Ωm

(
∆Ωm
Ωm

)
∆σ8

(
∆σ8
σ8

)
z,CR,HR 17 0.068 (23%) 0.090 (11%)
CR,HR 14 0.076 (25%) 0.11 (14%)

z,CR 10 0.082 (27%) 0.12 (15%)
z 9 0.087 (29%) 0.13 (16%)

Notes. We obtain posteriors from different test statistics, and display the
68% confidence intervals for Ωm and σ8, as well as the figure of merit
(FoM = Cov(Ωm, σ8)−1). The same parametrisation is used for each test
statistics and informative constraints are retrieved. This highlights the
universality of our physical modelling based on simulations.

simulation-based model to compute new scaling relation coef-
ficients when changing the cosmological and the feedback pa-
rameters. In figure 13, we track the changes of the slope and
scatter (two coefficients that have theoretical predictions, from
which actual values may differ because of non gravitational pro-
cesses) of the CR-M law when changing AS N1 and AS N2. We
simulated for each set of parameters 16 simulations of volume
(150 × 150 × 50) h−3Mpc3, at z = 0.21, projected on the last di-
mension. This represents 144 times the volume of one CAMELS
simulation from the CV set, and hence provides us with many
cluster detections to compute scaling relations. In the top panel
of figure 13, showing the variations of αCR−M , the error bars
are large hence only general trends can be retained. We see that
the parameter slightly increases (resp. decreases) with increasing
(decreasing) AS N1 (AS N2). This response of the slope parameter
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Fig. 9. Neural Posterior Estimation performed at different points in the parameter space. XODs are produced from 200 deg2 X-ray surveys,
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could explain the weak negative degeneracy observed in the full
simulation-based posterior, figure 10, in the AS N1-AS N2 region.
The bottom panel of figure 13 shows a cross effect of the two
SN feedback parameters on the slope. At low values of AS N1,
σCR−M is strongly affected when AS N2 is varied. Interestingly,
this behaviour does not appear for high AS N1 values, at least for
the current level of uncertainty on the data points. In appendix
B, we provide a more complete view of the dependence of the
scaling relations on the simulation parameters, including Ωm and
σ8.

With a simulation-based model that considers all relevant as-
trophysical parameters from simulations, we could build an em-
ulator of plausible scaling relations as a function of cosmological
and astrophysical parameters and, subsequently, forward model
cluster counts with these emulated scaling relations. In this way,
we would sample the cosmological and astrophysical parameter
space, avoiding forbidden regions and the degenerate parametri-
sation of the scaling relations. This would also allow an impor-
tant gain in speed, as XODs created with emulated scaling rela-

tions would require less computational resources than with the
simulation-based model. Traditional inference techniques would
be available for this type of forward model, as we would ob-
tain theoretical number counts, instead of Poisson realisations of
XODs. But we would loose the spatial information on the cluster
properties within the cosmic network (not used in this paper).

5.4. Towards an application on real data ?

In order to apply our method for an inference with real data,
several points should be carefully considered. The third question
raised in the introduction, relative to the realism of hydrodynam-
ical simulations, becomes here critical. We noticed in section 4.2
that our simulation-based model appears to predict more clusters
than the analytical method. We have ruled out a systematic error
from the LDL prediction. Candidates for this discrepancy might
be the X-ray properties emulated in the CAMELS/IllustrisTNG
simulations. As a result of the CAMELS implementation, SN
and AGN are tuned to provide realistic star formation histories,
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simulation-based forward model does not show this behaviour, in figure 10. XODs are produced from 200 deg2 X-ray surveys, selecting clusters
with the flux cut CRlim = 0.02c/s.
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Fig. 13. CR-M relation coefficients as a function of the simulation pa-
rameters, for large volumes emulated at z = 0.21. The x-axis varies
the AS N1 feedback parameter, while the line colour denotes a change in
AS N2. The top and bottom panel respectively show the variations of the
slope αCR−M and of the intrinsic scatter σCR−M . The error bars show the
interval covering 68% of the measured point around the median. The
lines have been slightly shifted horizontally to improve readability.

but not the overall properties of the X-ray cluster population.
We hence highlight the importance of calibrating the sub-grid
physical models on cluster-related observables. Beside the sim-
ulations used for calibration, another critical point is the detec-
tion method. It is important for a forward model to integrate the
same biases than the ones inherent to the processing of real data.
Given that our method produces mock X-ray observations, the
straight forward solution is to apply the same detection pipeline
on both the real and mock data. To do this, some simplifications
taken here have to be dropped: it becomes necessary to include
AGN contaminants, CCD defaults, realistic diffuse and proton
backgrounds, and a Poisson noise on the pixels photon counts.
Concerning the measurement, error models are needed for a scal-
ing relation-based modelling (e.g. in Garrel et al. 2022), but not
in a simulation-based modelling if the mocks and the detection
are realistic enough (until the photon noise level is reached).

A second improvement is expected regarding the simula-
tions that serve to train the extended LDL. Villaescusa-Navarro
et al. (2021) has for instance found that the star formation rate
density in the original CAMELS was not much sensitive to
changes in the two selected AGN parameters varied (only for
Illustris/TNG). In addition, we have also looked at the trend be-
tween ne, T and ρDM/ρc, at the voxel level in the CAMELS 1P
set, which varies only one parameter at a time. We find that the
gas properties are more affected by the SN parameters than by
the AGN feedback. This could explain why our extended LDL
is not very sensitive to these parameters. The surprising strong
impact of SN feedback is in fact indirect: the coupling between
SN and AGN feedback effectively tempers the latter, explaining
the opposite trend from increased AGN activity (Tillman et al.
2023; Medlock et al. 2024). New versions of CAMELS sim-
ulations are being run that include the variations of additional
physical parameters. More AGN feedback parameters will be
implemented, and specifically the threshold mass triggering the
AGN kinetic feedback mode, a parameter that is known to signif-
icantly impact the X-ray luminosity of extragalactic gas (Truong
et al. 2021). As a result, the extended LDL could be conditioned
on parameters that effectively impact X-ray observables, and the
learnt posterior could be marginalized on them. It will be neces-
sary to test our approach under this new configuration to assess
whether the additional parameters introduce degeneracies with
the cosmology.

Another important asset of this new CAMELS dataset is the
increase of the simulated box size, firstly to (50h−1Mpc)3 and
later to (100h−1Mpc)3. This firstly will form more clusters, and
more massive ones, leading to more training samples for the
LDL approach. Also, we have tested the fidelity of LDL emu-
lated scaling relations only on the fiducial model, because the
small boxes in the LH set only produce a handful of groups and
lightweight clusters, and do not provide us with sufficient statis-
tics to compute scaling relations. The larger boxes of the next
CAMELS iteration will provide us with more statistics. It could
represent for us an opportunity to analyse the LDL generated
clusters for non fiducial sets of parameters.

Another needed improvement is relative to the computational
resources. Our approach can only currently run on a single GPU,
which limits drastically the number of particles in a simulation.
Here, the limiting factor has been the simulated volumes for the
lightcone creation. This has set the resolution of the LDL em-
ulation, and hence we downgraded the CAMELS/IllustrisTNG
simulations accordingly. An undergoing work (Kabalan et al.,
in prep) aims at parallelizing critical parts of our simulations,
which will allow us in the end to improve the resolution of our
X-ray mocks. This is of particular importance as cluster cores
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can exhibit very diverse emission characteristics, and because
the matter distribution in clusters contains information on the
accretion and merger history of a given cluster.

6. Conclusions

In this study, we have presented a novel approach to forward
model cluster number counts in deep X-ray surveys. We used
cosmological simulations, that integrate the dynamical and bary-
onic processes affecting the cluster luminosities. We have de-
veloped an accelerated baryonification technique by extending
the LDL approach. The LDL uses particle displacements from
corrections to the gravitational potential and non linear activa-
tion to transform a DMO field into a targeted baryonic property
field. As such, it is motivated by physical arguments and simpler
than deep generative models. We allow the baryonic properties
to be conditioned on cosmology and on the feedback parame-
ters. Moreover, our baryon pasting also depends on redshift. We
adopted a novel, flexible Fourier filter to implement the LDL
model and, subsequently, derived the cluster properties down to
X-ray observables, i.e. XMM countrates in several bands. We
created a large number of lightcones (0.1 < z < 0.5, 200 deg2) to
perform simulation-based cosmological inference for the cluster
population in the CR-HR-z parameter space. We compared our
results with the analytical approach.

Our method not only avoids inference on cosmology-
dependent measurements (such as mass and luminosity), but also
bypasses the use of empirical scaling relations to model the X-
ray cluster properties. We now examine its impact on the three
key questions raised in the introduction:

– Accuracy of a fast ML emulator. We have demonstrated
that our extended LDL model was able to reproduce the clus-
ter population from the original simulations, for the fiducial
parameters. Moreover, our model does more than just recov-
ering the statistical properties of the population, it also par-
tially captures the specificity of each individual cluster. In
that sense, our modelling is superior to an approach based
on scaling relations. However, due to the lack of simulated
volume for non-fiducial parameters, we cannot run the same
test in the whole parameter space. Improvements in the em-
ulator resolution could help fixing the remaining uncertainty
on the X-ray fluxes at the individual cluster level. The avail-
ability of larger simulation boxes for some regions of the pa-
rameter space would help both the training and the testing of
our model. The upcoming versions of CAMELS will satisfy
this requirement. We recall that we chose a physics-based,
lightweight ML approach. Conversely, one could try deep
neural architecture to perform the baryonification, but at the
cost of interpretability. It would be very informative to asses
which approach performs better.

– Viability for cosmological inference. Our fast baryonifica-
tion method reduces the computational cost of a simulation-
based forward model and thus enables cosmological infer-
ence. Compared to the analytical modelling, our approach is
less degenerate and allows us to infer nuisance parameters
that have a more physical meaning than scaling relation co-
efficients. Our parametrisation, indeed, is directly linked to
well-identified astrophysical processes, and hence is in prin-
ciple more universal: it is insensitive to changes in the survey
design or in the chosen summary statistics. Nonetheless, we
can only let free the parameters that are varied in the original
CAMELS dataset, and it could be important to marginalize
over other simulation parameters that are here fixed. Once

again, the future developments of CAMELS will offer the
opportunity to enlarge the conditioning of our extended LDL
model.

– Realism of the hydrodynamical simulations. Although this
is not the main issue targeted in this work, the 40% differ-
ence between the simulation-based and analytical number
counts may suggest a lack of realism. We could here ques-
tion either the realism of the simulations, or the fiducial val-
ues chosen for the feedback parameters, or the implemen-
tation of the retroaction mechanisms themselves. However,
the gap we observe could also arise from our simplified clus-
ter detection and characterization process. Both, upgraded
physics prescriptions in the hydrodynamical simulations and
a more realistic detection chain will be necessary to apply
our method to observed cluster samples. Although the out-
put resolution of the simulations is not a critical point for our
goals, the resolution of the hydrodynamic solver may well
play a critical role on the realisms of the simulations.

Further work will be dedicated to deeper analysis of the clus-
ters emulated by the extended LDL, in order to charactereise
their profiles. We also plan to investigate de discrepancy with
the observational number counts by upgrading the production of
the X-ray mocks. Regarding the fast baryon pasting approach,
we will leverage the new large simulation sets in CAMELS to
improve our analysis of the conditioning step. This will also al-
low us to more accurately map the scaling-relation coefficients as
a function of the physical parameters (here SN and AGN feed-
back) as sketched in figure 13. Consequently, we shall be able
to identify regions of the cosmology-coefficient space that are a
priori forbidden by cluster physics. This would provide a novel
approach to setting priors on the coefficients.

Our simulation-based forward approach opens new avenues
for implicit modelling and inference in cluster cosmology. In
particular, when we are in a position to satisfactorily reproduce
the observables properties of each individual cluster, the X-ray
mapping will implicitly carry a lot of supplementary informa-
tion relative to cluster environments and histories. This could in
turn be implemented in the cosmological inference in terms of
new observables. We, hence, can think of switching from CR-
HR-z to a full spatial mapping of the cluster population in the
form of CR-HR-z-x-y (x = RA, y = Dec). This would allow us
to combine the current XOD with an information comparable to
the 2 pt-correlation function. But providing much more stringent
constraints, since the X-ray cluster properties would be related
to their location within the cosmic network. In this way, we an-
ticipate that the 5D new summary statistics would exhaust the
cosmological potential of an X-ray cluster survey, and remove
most of the degeneracy in cluster cosmology. Joint modelling of
other cosmological probes along with clusters is also a possibil-
ity within this framework, and promises to break degeneracies
between nuisance and cosmological parameters (Omori 2022).
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Fig. A.1. Ranks of the true Ωm (left) and σ8 (right) in the 1D marginal-
ized posteriors. We have tested 500 different compressions y0, leading
to the distributions represented in the blue histograms. If the posteri-
ors are unbiased and with the proper width, the observed distribution
should be pproximately flat (dashed black line). This is the case for σ8.
However, Ωm exhibits a negative slope that indicate a bias, but still an
appropriate posterior size (no apparent curvature).

Appendix A: Quality of the posteriors

We here assess the quality of the 1D posteriors on the cosmol-
ogy. We begin with 500 XODs x0 unseen during the ResNet and
NPE trainings, which we compress into y0. We followingly ob-
tain 500 6-dimensional posteriors qϕ(θ | y = y0). We then obtain
the 1D posteriors over Ωm andσ8 by marginalising over the other
parameters. We compute the 1D rank for both Ωm and σ8:

r(θtrue, y0) =

∫ θtrue

θmin

p(θ | y = y0) dθ, (A.1)

with p the 1D marginalised posterior. We then represent the dis-
tribution of r(θtrue, y0), for both parameters, in figure A.1. A flat
trend indicates no bias, while a slope reveals a bias. A concavity
(resp. convexity) denotes an underconfidence (underconfidence)
of the posterior. The linear trend for each plot indicates that our
posteriors have the right size. However, the negative slope for
Ωm shows that we are biased on this parameters, which could
be explained by the MSE loss in the regression. Lanzieri et al.
(2024) have for instance found that this loss function can induce
a biased posterior.

Appendix B: Deeper insights into the CR − M
scaling relation coefficients as a function of
simulation parameters

In figure B.1, we provide a 4D view of the scaling relation co-
efficients dependance on simulation parameters. In the Ωm-σ8
plane (top panel), both the scatter and the slope of the CR-M re-
lation vary smoothly, with variations from -30% to +80% (resp. -
10% to +40%) for the scatter (the slope). In the AS N1-AS N2 plane
(bottom panel), we also observe trends, although the variations
appear to be weaker (±10% in all cases) and a bit noisier.
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Fig. B.1. 4D view of the dependance of the scaling relation coefficients
on the simulation parameters. The marker size denotes the value of the
scaling relation slope, and the marker color represents its dispersion.
Both quantities are normalized with respect to the scaling relation of
the fiducial model (central point).
Top: Variation of the CR-M slope and scatter when varying Ωm, σ8,
sampled on a linear grid.
Bottom: Variation of the CR-M slope and scatter when varying AS N1
and AS N2, sampled on a logarithmic grid.

Article number, page 15 of 15


